

Blalock, Susan <susan.blalock@deq.virginia.gov>

Fwd: FW: Semi-Monthly Daily LFG Well Temperature and Status Update

1 message

Blalock, Susan <susan.blalock@deq.virginia.gov>
To: Susan Blalock <susan.blalock@deq.virginia.gov>

Thu, Jun 2, 2022 at 9:02 AM

From: King, Brandon < BKing@scsengineers.com>

Sent: Wednesday, June 1, 2022 5:44 PM

To: crystal.bazyk@deq.virginia.gov; hall.kristen@epa.gov; jeff.hurst@deq.virginia.gov; willard.erinm@epa.gov; stacy.bowers@deq.virginia.gov; David Cochran <dcochran@bristolva.org>; mmaine@bristolva.org; Randall Eads <CityManager@bristolva.org>

Cc: Lock, Tom <TLock@scsengineers.com>; Dick, Bob <BDick@scsengineers.com>; Nachman, Lucas

<LNachman@scsengineers.com>; Warren, Charles <CWarren@scsengineers.com>

Subject: RE: Semi-Monthly Daily LFG Well Temperature and Status Update

Ms. Hall and Ms. Bazyk,

In accordance with EPA's letter, "Approval of Higher Operating Temperature Values of Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Facility" from August 2021, I am providing the June 1, 2022 status report on the existing wells, expansion of the gas collection system, and continuing operating and monitoring results, covering the period from May 15-31, 2022.

Let me know if you have any questions.

Thank you,

D. Brandon King

Project Manager

SCS Engineers

15521 Midlothian Turnpike

Suite 305

Midlothian, VA 23113

Office: (804) 378-7440

Office Direct: (804) 486-1902

Mobile: (804) 840-7846

Semi-monthly Daily LFG Well Temperature Status Update_6-1-22.pdf

Environmental Consulting & Contracting

SCS ENGINEERS

June 1, 2022

File No. 02218208.04

MEMORANDUM

TO: Kristin Hall, EPA Region III Crystal Bayzk, VDEQ-SWRO

FROM: D. Brandon King, SCS Engineers Robert E. Dick, SCS Engineers

SUBJECT: Semi-monthly Status Update – May 15th through May 31st, 2022 Bristol Integrated Waste Management Facility, Bristol, Virginia

In accordance with the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21, SCS is submitting this semi-monthly status update to satisfy the condition of compliance provision #2. This compliance provision report includes daily temperature readings of the existing and new wells installed. In addition, this report includes a summary of work accomplished during this reporting period of 5/15/22 through 5/31/22, pursuant of compliance provision #2.

DAILY TEMPERATURE READINGS

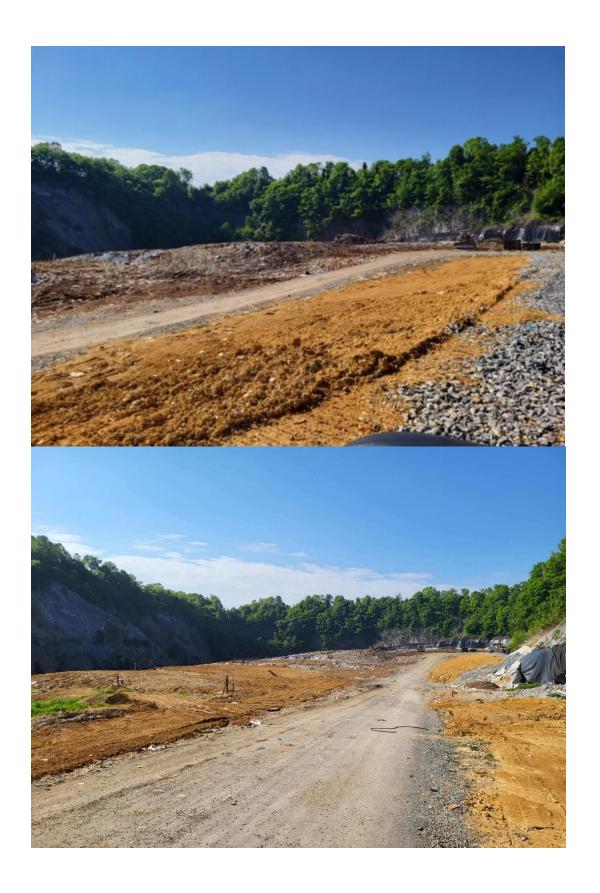
Daily temperature readings were recorded throughout the second half of May and displayed on the attached table. Existing wells GW-31R and GW-37 continue to exhibit temperatures at or near 160F, while existing wells GW-46 and GW-47exhibited temperatures below 145F. New well GW-64 recorded a temperature just above 145F from 5/19/22 til the end of the month, according to the City's data. New well GW-55 recorded a temperature of 180F. All other LFG wells recorded temperatures below 145F at the end of May. SCS will mobilize to the site to conduct June monthly LFG wellfield monitoring during the first week of June.

LFG ANALYTICAL DATA REVIEW

The City and SCS are still awaiting the EPA's evaluation of the Higher Operating Value for Temperature Request letter submitted to EPA on 3/8/22. Late May 2022, exceedance temperatures persist in HOV requested wells GW-31R, GW-37, and GW-64. However, SCS recorded a temperature of 144F in well GW-31R on 5/24/22 and the City recorded 140F at well GW-31R on 5/25/22, thus reestablishing compliance.

Well GW-55 recorded a temperature of 180F by SCS on 5/16/22. SCS recorded a CO sample via 1.5L Summa Canister at GW-55 on 5/16/22 and had the sample sent to Enthalpy Analytical for EPA Method CO ALT 145 laboratory analysis. The sample was analyzed on 5/20/22 and the results showed CO concentrations below the minimal detection limit (MDL) of 90 parts per million (ppm) for GW-55.

Well GW-55 recorded a temperature of 140F by SCS on 5/24/22. This reestablished compliance in well GW-55. Therefore additional monitoring was not required per Subpart AAAA as the temperature was below 145F. The laboratory analytical results for EPA Method CO ALT 145 from the report dated 5/25/22 are attached for reference.



NON-ROUTINE O&M

SCS Field Services (FS) 0&M was on-site the week of 5/23/22 to respond to a loss of vacuum to select LFG extraction wells located on the south side of the new southeast sump of the Permit #588 Landfill. SCS mobilized on 5/24/22 to complete May LFG wellfield monitoring activities and verify the pump was not operational in this sump. Subsequent to verifying the SE sump pump was nonfunctional, SCS performed a test to verify the two QED AP4.5 Ultra pumps installed in the poly tank (LCT-1) were functional. SCS confirmed the QED pumps were functional. On 5/25/22, SCS 0&M pulled one QED AP4.5 Ultra pump from LCT-1, removed the Pump One pump from the SE sump, and installed the QED pump in the SE sump. SCS 0&M activated the pump, confirmed condensate in the LFG header stopped surging, and improved available vacuum had been restored to the southern quarry wells. Ingenco was able to restart their plant that afternoon. SCS 0&M is anticipated to mobilize to Bristol during the week of 5/31/22 for non-routine 0&M and to begin June 2022 LFG wellfield monitoring.

City personnel have been hauling cover soil into Permit #588 Landfill and spreading over exposed areas of waste in non-active filling areas periodically throughout the month of May. There were approximately 200 loads, 20 loads per day, hauled into the Permit #588 Landfill and spread over non-active filling areas over the past two weeks. See reference photos from 6/1/22 below.

EVALUATION OF LFG SYSTEM

There should be several functional dedicated pneumatic dewatering pumps available on standby to be switched out in the event a well has a non-functioning pump. SCS-FS O&M recommends a dedicated pneumatic pump testing and cleaning station be set up on-site in order to confirm the operational status of dewatering pneumatic pumps at the Facility. SCS-FS O&M provided the pump testing and cleaning station quote to the City. However, the City had further discussions with SCS O&M while on-site on 5/25/22 to allow them access to the City's Service Station. The City has the resources to customize a pump cleaning and testing station with a wash bay, table with a vice, and an air compressor from a service truck to test the pneumatic pumps to satisfy this need from O&M.

Furthermore, SCS Engineers advises the City to procure a QED AP4.5 Ultra High-Temperature pneumatic pump with dedicated high temperature tubing bundle to compare overall performance and time duration between pump maintenance (e.g. pump pulling and cleaning) to the One Pump by Pump One. Looking further ahead, it will be important for the City to have at least 4 or 5 additional dewatering pumps that are tested and confirmed to be operational to have on standby. SCS is investigating other pumps that may require less maintenance in these conditions.

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol Michael Maine, City of Bristol Jeff Hurst, VDEQ-SWRO Tom Lock, SCS Field Services

David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

	_			Month	May	May	May	May	May	May	May	May	May	May	May	May	May	May	May	May
	Depth	Ē.		Day	Sunday	Monday	Tuesday	Wednesday		Friday	Saturday	Sunday	Monday	Tuesday	Wednesday		Friday	Saturday	Sunday	Monday
9	₽		se	Date	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Note	Well	Date	Phase	Well Number																
ADI	102	10/16/2016	Old Well	35	69	80	80	90	85	90	90	90	80	80	80	80	80	91	90	93
ADI	70	9/6/2017	Old Well	39	113	120	110	120	110	120	130	125	120	120	120	120	120	120	122	117
ADI	100	9/7/2017	Old Well	40	116	120	120	120	115	117	120	120	70	70	70	110	110	112	110	110
ADI	110	10/4/2016	Old Well	46	69	80	110	149	90	115	110	70	100	110	120	120	145	135	135	136
ADI	120	10/4/2016	Old Well	47	69	105	115	115	115	100	85	85	70	70	70	70	120	124	122	125
						•			•				1							•
6	120	9/17/2013	Old Well	29																
7	80	5/14/2008	Old Well	30																
8	100	8/23/2017	Old Well	30R																
9	120	9/17/2013	Old Well	31																
10	120	8/30/2017	Old Well	31R	139	150	145	145	160	160	160	160	160	150	140	145	150	160	158	160
11	70	7/29/2016	Old Well	32																
12	100	7/28/2016	Old Well	33																
13	100	7/30/2016	Old Well	34																
14	100	8/1/2016	Old Well	36																
15	100	8/24/2017	Old Well	37	152	150	150	150	150	149	160	160	160	160	145	150	160	160	162	158
16	50	8/25/2017	Old Well	38																
17	75	9/8/2017	Old Well	41																
18	57	9/8/2017	Old Well	42																
19	110	10/7/2016	Old Well	48																
		•				1		•	•		•		<u>. </u>	•						•
1	120	10/1/2021	New Well	32R	126	122	138	140	149	142	140	140	140	139	120	140	140	Too Tall	Too Tall	Too Tall
2	110	10/1/2021	New Well	49	129	130	130	130	140	140	145	145	140	140	140	139	140	122	120	121
3	96	10/1/2021	New Well	50	130	131	130	130	140	140	140	140	140	140	130	140	140	135	140	136
4	114	10/1/2021	New Well	51	69	81	80	115	100	140	90	100	90	80	90	90	100	110	109	112
5	109	10/1/2021	New Well	52	139	140	140	141	140	115	140	140	130	140	130	140	140	138	140	142
6	91	10/1/2021	New Well	53	114	105	110	150	110	140	119	85	70			110	110	110	105	100
7	91	10/1/2021	New Well	54	132	140	140	145	40	185	140	150	120	145	145	145	140	Too Tall	Too Tall	Too Tall
8	104	10/1/2021	New Well	55	190	Shaking	170	180	180	180	180	190	150	145		180	180	180	180	180
9	109	10/1/2021	New Well	56	ould not read	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	140	110	115	100	100	140	140	Too Tall	Too Tall	Too Tall
10	103	10/1/2021	New Well	57	138	140	140	140	140	140	150	79	70	80	100	140	140	140	138	134
11	92		New Well	58	115	110	110	125	120	120	120	70	70	60	70	120	120	118	115	114
12	72		New Well	59	102	110	100	120	115	117	130	90	70	60	60	120	120	120	119	121
13	120	10/1/2021	New Well	60		Water	Water	130	Water	125	119	120	120	120	110	120	110	120	130	133
14	105	10/1/2021	New Well	61	116	110	110	110	120	120	125	120	120	120	140	110	105	112	110	105
15	120	10/1/2021	New Well	62	110	120	120	120	125	130	125	130	120	120	70	110	100	55	47	52
16	117		New Well	63	90	119	100	100	105	100	110	105	100	90	90	90	85	Too Tall	Too Tall	Too Tall
17	120	10/1/2021	New Well	64	138	135	130	140	150	150	150	150	150	145	140	145	140	145	148	146
18	100		New Well	65	122	130	125	120	140	140	130	130	130	120	120	110	110	128	130	130
19	102	10/1/2021	New Well	66	121	120	120	130	130	130	130	90	70	70	65	130	130	132	130	130
20	100	10/1/2021	New Well	67	138	150	140	150	160	150	145	145	130	150	119	140	150	138	140	138
21	75	10/1/2021	New Well	68	114	116	110	120	125	120	130	130	120	120	120	120	120	120	120	120

Certificate of Analysis

Final Report

Laboratory Order ID 22E1021

Client Name: SCS Field Services - Harrisburg, PA

Date Received: May 18, 2022 10:15

4330 Lewis Road, Suite 1

Date Issued: May 25, 2022 17:04

Harrisburg, PA 17111

Project Number: 0722002.00

Submitted To: Tom Lock

100001415

Purchase Order:

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 05/18/2022 10:15. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 22E1021

Client Name: SCS Field Services - Harrisburg, PA

May 18, 2022 10:15

4330 Lewis Road, Suite 1

Date Issued: May 25, 2022 17:04

Harrisburg, PA 17111

Project Number: 0722002.00

Purchase Order:

Date Received:

Submitted To: Tom Lock

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
55	22E1021-01	Air	05/18/2022 00:00	05/18/2022 10:15

Certificate of Analysis

Final Report

Laboratory Order ID 22E1021

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

May 18, 2022 10:15

4330 Lewis Road, Suite 1

Date Issued:

May 25, 2022 17:04

Harrisburg, PA 17111

Submitted To:

Tom Lock

Project Number:

0722002.00

Client Site I.D.:

Bristol

Purchase Order:

ANALYTICAL RESULTS

Project Location:

Field Sample #: 55

Sample Description/Location: Sub Description/Location:

Initial Vacuum(in Hg): 20.6 Final Vacuum(in Hg): 3.2

Sample ID: 22E1021-01

Canister ID: 063-00305:

Receipt Vacuum(in Hg): 3.2

Sample Matrix: Air

Flow Controller Type:

Sampled: 5/18/2022 00:00

Canister Size:

Flow Controller ID:

Sample Type:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

		ppmv		ALT-145				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Carbon Monoxide, as received	ND	90.0	90.0		9	1	5/20/22 9:14	DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22E1021

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

May 18, 2022 10:15

4330 Lewis Road, Suite 1

Date Issued:

May 25, 2022 17:04

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

0722002.00

Client Site I.D.: Bristol

Purchase Order:

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method Batch ID		Sequence ID	Calibration ID
Volatile Organic Compo	unds by GC/TCD - Unadjusted, as r	eceived basis	Preparation Method:	No Prep VOC GC Air	
22E1021-01	1.00 mL / 1.00 mL	ALT-145	BFE0765	SFE0700	AG00026
22E1021-01RE1	1.00 mL / 1.00 mL	ALT-145	BFE0765	SFE0740	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 22E1021

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

May 18, 2022 10:15

4330 Lewis Road, Suite 1

Date Issued:

May 25, 2022 17:04

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Project Number:

0722002.00

Client Site I.D.:

Purchase Order:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFE0765 - No Prep VO	C GC Air									
Blank (BFE0765-BLK1)					Prep	ared &	Analyzed	: 05/19/20)22	
Carbon Monoxide	<	10.0	ppmv							
LCS (BFE0765-BS1)					Prep	ared &	Analyzed	: 05/19/20)22	
Methane	4510	500	ppmv	5000		90.2	0-200			
Carbon dioxide	4140	500	ppmv	5000		82.7	0-200			
Oxygen (O2)	4790	500	ppmv	5000		95.9	0-200			
Nitrogen (N2)	4990	500	ppmv	5000		99.7	0-200			
Hydrogen (H2)	5330	200	ppmv	5100		104	0-200			
Carbon Monoxide	4650	10	ppmv	5000		93.1	0-200			
Duplicate (BFE0765-DUP1)	Source: 22E0			0594-04	Prep	ared &	Analyzed)22		
Methane	451000	4500	ppmv		45100	00		0.0100	25	
Carbon dioxide	297000	4500	ppmv		29600	0		0.321	25	
Oxygen (O2)	17200	4500	ppmv		1720	0		0.133	25	
Nitrogen (N2)	202000	4500	ppmv		20300	0		0.195	25	
Hydrogen (H2)	<	1800	ppmv		<180	0		NA	25	
Carbon Monoxide	<	90.0	ppmv		<90.0)		NA	25	
Duplicate (BFE0765-DUP2)		Soi	ırce: 22E	0594-05	Prepared & Analyzed: 05/19/2022					
Methane	452000	4500	ppmv		45000	0		0.266	25	
Carbon dioxide	297000	4500	ppmv		29700	0		0.124	25	
Oxygen (O2)	14600	4500	ppmv		1460	0		0.113	25	
Hydrogen (H2)	<	1800	ppmv		<180	0		NA	25	
Nitrogen (N2)	191000	4500	ppmv		19100	0		0.130	25	
Carbon Monoxide	<	90.0	ppmv		<90.0)		NA	25	
Duplicate (BFE0765-DUP3)		Soi	ırce: 22E	1017-01	Prep	ared &	Analyzed	: 05/19/20)22	
Methane	72100	4500	ppmv		7150	0		0.750	25	
Carbon dioxide	613000	4500	ppmv		60900	0		0.666	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Hydrogen (H2)	233000	1800	ppmv		23100	0		0.683	25	
Nitrogen (N2)	11400	4500	ppmv		1130)		0.851	25	
Carbon Monoxide	1170	90.0	ppmv		1160			0.935	25	

Certificate of Analysis

Final Report

Laboratory Order ID 22E1021

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

May 18, 2022 10:15

4330 Lewis Road, Suite 1

Date Issued:

May 25, 2022 17:04

Harrisburg, PA 17111

Submitted To: Tom

Tom Lock

Project Number:

0722002.00

Client Site I.D.: Bristol

Purchase Order:

$\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/TCD - Unadjusted}, \textbf{ as received basis - Quality Control}$

Enthalpy Analytical

	Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch BFE0765 - No Prep VOC GC Air

Duplicate (BFE0765-DUP5)		Soi	urce: 22E1021-01RE1	Prepared: 05/	/19/2022 Analyzed:	05/20/2022	
Methane	<	4500	ppmv	<4500	NA	25	
Carbon dioxide	<	4500	ppmv	<4500	NA	25	
Oxygen (O2)	183000	4500	ppmv	183000	0.176	25	
Hydrogen (H2)	<	1800	ppmv	<1800	NA	25	
Nitrogen (N2)	660000	4500	ppmv	658000	0.194	25	
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25	
Duplicate (BFE0765-DUP6)		Soi	urce: 22E0893-01	Prepared: 05/	/19/2022 Analyzed:	05/20/2022	
Methane	400000	4500	ppmv	400000	0.247	25	
Carbon dioxide	281000	4500	ppmv	281000	0.0422	25	
Oxygen (O2)	41500	4500	ppmv	41400	0.334	25	
Hydrogen (H2)	<	1800	ppmv	<1800	NA	25	
Nitrogen (N2)	193000	4500	ppmv	192000	0.333	25	
Carbon Monoxide	<	90.0	nnmy	<90.0	NA	25	

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
---------	----------------	---------	----------------	--

Certificate of Analysis

Final Report

Laboratory Order ID 22E1021

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

May 18, 2022 10:15

4330 Lewis Road, Suite 1

Date Issued:

May 25, 2022 17:04

Harrisburg, PA 17111

Submitted To: To

Tom Lock

Project Number:

0722002.00

Client Site I.D.:

Bristol

Purchase Order:

Code	Description	Laboratory ID	Expires
MADEP	Massachusetts DEP	M-VA913	06/30/2022
MdDOE	Maryland DE Drinking Water	341	12/31/2022
NC	North Carolina DENR	495	07/31/2022
NCDEQ	North Carolina DEQ	495	12/31/2022
NCDOH	North Carolina Department of Health	51714	07/31/2022
NJDEP	NELAP-New Jersey DEP	VA015	06/30/2022
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #007	68-03503	10/31/2022
VELAP	NELAP-Virginia Certificate #11821	460021	06/14/2022
WVDEP	West Virginia DEP	350	11/30/2022

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

AIR ANALYSIS

	inerty An, s	varer a s	On Lo	10014101				CHAIN	OF CUS	TODY	Ed	quipm	ent due	5/27/22	e e				
C	MPANY NAME:	: SCS Field	d Servi	ces - Harri	sbui	rg IN\	OICE TO	: Same				PROJ	ECT NAM	IE/Quote #	#: Bristo	ol			
C	NTACT:					INV	VOICE CO	NTACT:				SITE	NAME: -{	Bristol					
D	DRESS:					IN	VOICE AD	DRESS:				PROJ	ECT NUM	IBER: 0	12200	28.0	00		
Ή	ONE #:					IN	VOICE PH	ONE #:				P.O. #							
Α	X #:			EN	IAIL	:						Pretre	atment Pr	ogram:					
S S	ample for comp	liance rep	orting?	YES NO		Regulate	ory State:	ls s	sample fro	m a chlorir	nated supp	oly?	YES 🔨	IO PV	VS I.D. #:				
A	MPLER NAME	(PRINT): 🖟	Lyan	Sermo	1	SA	MPLER S	IGNATUR	E: Rya	w Dey	mon	Turn /	Around T	ime: Circ	cle: 10	5 Days		or _	_ Day
atı	ix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	Ifill/V	ent Gas OT:	=Other	-\	0	V.			063	3-22E-001	9				
		Regulator	nfo	Canister In	form	nation			Sampling S	Start Informa	ation		Sampling	Stop Inform	nation		Codes)	ANA	LYSI
	CLIENT						LAB	LAB	Barometric	Pres. (in Hg): I		Barometric	Pres. (in H	Ť	т	(See Co	8	
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time	Initial Canister Vacuum (in Hg)	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp °F	Matrix (s	Alt 145 C	
1)	55	LFGST OO I		10044	1.4	BC220504 -02	20.4	3.2	5/14/22	14:22	25	180	5/16/22	14:28	24	180	LG	x	
2)					1.4												LG	x	
3)																			
4)												26.0							
					550	=====		5.5	E / TN1E		71.0	74	310	Noi	ice y	10 20	2a	1	
1	NOUISHED: LYM	rour				EIVED:	3x3b	_	E / TIME	QC Data P	ackage LA	B USE	ONLY						
EL	DISHED:	Alx E	/	E / TIME		EIVED:	hill fo	DAT DAT SINE	E / TIME 122 LUE E / TIME	Level II Level III	22E	SCS Brist		Services	22E1	1021			
CL	∞		DAT	C / THVIC	neu	LIVEU.		DAT	E / THVIC	Level IV	-			1022 D	05/25/	/2022			
	of 1									Level IV	021	Reco	1: 05/18/2	2022 DI	ie: 05/25/ v13	30325002			